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Figure 1: Equal-time comparison among our method with polynomials of order 1, conventional Monte Carlo (MC) integration, and the
regression-based MC integration of Salaün et al. [SGH∗22] with polynomials of order 1 (O1) and 3 (O3) on the bathroom scene. We report
the number of samples per pixel (SPP) computed by each method and the relative mean squared error (relMSE) compared to the reference
image, with speed-up values relative to MC in parentheses. Our method exhibits the lowest variance both visually and quantitatively. For a
more detailed comparison, please refer to the HTML viewer provided in the supplemental.

Abstract
Monte Carlo integration estimates the path integral in light transport by randomly sampling light paths and averaging their
contributions. However, in scenes with many lights, the resulting estimates suffer from noise and slow convergence due to high-
frequency discontinuities introduced by complex light visibility, scattering functions, and emissive properties. To mitigate these
challenges, control variates have been employed to approximate the integrand and reduce variance. While previous approaches
have shown promise in direct illumination application, they struggle to efficiently handle the discontinuities inherent in many-
light environments, especially when relying on a single control variate. In this work, we introduce an adaptive method that
generates multiple control variates tailored to the spatial distribution and number of lights in the scene. Drawing inspiration
from hierarchical light clustering methods like Lightcuts, our approach dynamically determines the number of control variates.
We validate our method on the direct illumination problem in scenes with many lights, demonstrating that our adaptive multiple
control variates not only outperform single control variate strategy but also achieve a modest improvement over current state-
of-the-art many-light sampling techniques.
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1. Introduction

The rendering equation [Kaj86] and the path integral formula-
tion [Vea97] provide the foundational mathematical framework for
physically based rendering, where light transport is formulated as
an integration over all possible light paths between the camera
and lights. In scenes with complex lighting distributions, especially
those involving numerous lights, the integrand that determines the
contribution of a point usually exhibits high-frequency disconti-
nuities because it depends on the visibility of each light to the
point, the distribution of the scattering function at the point, and
the light’s power and emissive characteristics. These discontinuities
lead to intricate integrals that challenge traditional Monte Carlo
(MC) integration, which suffer from slow and uneven convergence
even with variance reduction techniques like (multiple) importance
sampling [Vea97], low-discrepancy sampling [Owe13], Metropo-
lis sampling [MRR∗53], and some other adaptive sampling strate-
gies [PBPP11, LPG13].

Recent studies [CJMn21, SGH∗22] have explored the use of
control variates (CVs) to accelerate the convergence of MC in-
tegration, and both approaches have achieved promising results
in direct illumination application. To summarize, Crespo et al.
[CJMn21] employed nested quadrature rules to partition the pri-
mary sample space into adaptively distributed subregions, generat-
ing a piecewise polynomial control variate. However, their heuristic
method for defining these subregions may miss important regions
of the integrand, leading to suboptimal approximations. Salaün et
al. [SGH∗22] proposed a regression-based approach to construct
polynomial (or other basis functions) control variates for each pixel
and provided a rigorous theoretical derivation to validate its ef-
fectiveness. Nevertheless, polynomial basis (as well as other basis
functions) struggle to approximate functions with numerous dis-
continuities. As illustrated in Figure 2, their method becomes less
effective as the number of lights increases, and eventually perform-
ing similarly to the standard MC estimator.

To address the limitations of the above CVs methods in many-
light rendering, we have a key insight that the discontinuities in
the integrand are intrinsically tied to the number and spatial dis-
tribution of lights in the scene – properties that can be efficiently
captured through hierarchical light clustering similar to Lightcuts
[WFA∗05] approach. Building on this insight, we propose a novel
method that adaptively generates multiple control variates guided
by Lightcuts-based light clustering, where the number of CVs are
determined by the distribution of lights in the scene. We vali-
date our approach on the direct illumination problem with many
lights. The results show that our method outperforms the single
control variate approach and yields a modest improvement over
current state-of-the-art many-light sampling methods. In summary,
our work makes the following contributions:

• We introduce multiple control variates into MC integration to
reduce variance.

• We propose an adaptive method for generating multiple control
variates for each pixel based on Lightcuts.

• We demonstrate the effectiveness of our approach in solving the
direct illumination problem for scenes with many lights.
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Figure 2: Comparison of integration error ratio relative to MC as
a function of the number of lights in the scene, using a fixed bud-
get of 1024 samples. Salaün et al. [SGH∗22] use 1st and 3rd order
polynomials, while our method uses only 1st order polynomial. (a)
Schematic depiction of a diffuse surface illuminated by many small-
area lights. As the number of lights increases, the discontinuities in
the integrand also increase due to the random selection of lights.
(b) Plot of the integration error ratio. When the number of lights
is small, the method by Salaün et al. significantly outperforms MC.
However, as the number of lights increases and the integrand be-
comes increasingly discontinuous, their advantage diminishes and
their performance converges to that of the MC estimator. In con-
trast, our method consistently achieves substantial error reduction.
Note that for this simple scene, we use one control variate per light
without Lightcuts. Although the number of control variates grows
with light count, the cost remains nearly constant.

2. Related Work

2.1. Control variates in rendering

Control variates [Loh95] are techniques for variance reduction that
work by using MC integration to compute the difference between
a target integrand f and a related function h (the control variate).
This difference is then added to the analytical integral of h to ap-
proximate the integral of f .

In recent years, several studies have explored the application of
control variates in solving integral problems in rendering. Lafor-
tune and Willems proposed the use of a constant ambient term
[LW94] along with a directional, piecewise approximation of indi-
rect radiance [LW95] as control variates for computing indirect dif-
fuse illumination. Szécsi et al. [SSSK04] enhanced variance reduc-
tion by combining correlated sampling and importance sampling in
the computation of direct light source and environment mapping.
Clarberg and Akenine-Möller [CAM08] further leveraged the spa-
tiotemporal correlation of the visibility function by using a visibil-
ity cache as control variates for direct illumination in environment
maps. Vévoda et al. [VKK18] employed the estimated contribu-
tions from light clusters as control variates to reduce variance in
the computation of direct illumination in scenes with many lights.
Pantaleoni [Pan20] proposed a path tracing-based progressive hi-
erarchical solver that approximates the light field information in a
scene by constructing finite element structures at each vertex of the
path. These approximations are used both to guide sampling and
as control variates for computing the outgoing radiance. Müller et
al. [MRKN20] proposed a neural network-based parametric con-
trol variate, utilizing the learning capability of neural networks to
optimize the construction of control variates. Hua et al. [HGS23]
revisited the theoretical formulations of optimal control variate
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[FCH∗06] and optimal multiple importance sampling [KVG∗19].
Then they devised local, spatially shared, low-dimensional con-
trol variates that are practical for common rendering scenarios.
Rousselle et al. [RJN16] applied control variates in the contexts
of re-rendering and gradient-domain rendering. In addition, Xu et
al. [XLG∗24] proposed a residual path integral formulation that
incorporates control variates and applied it to the re-rendering of
object movement. Novak et al. [NSJ14] introduced residual ratio
tracking for estimating attenuation, demonstrating that control vari-
ates can effectively reduce variance when evaluating transmittance
in participating media [KHLN17, GMH∗19, KDPN21].

Crespo et al. [CJMn21] addressed the challenge of handling
both low-frequency regions and high-frequency details in multi-
dimensional integrals by proposing an adaptive piecewise polyno-
mial control variates technique in the primary sample space. Their
method uses nested quadrature rules to partition the space into
adaptively distributed subregions and generate polynomial approx-
imations. However, their subregion definition may sometimes miss
important parts of the integrand, leading to inaccurate integral ap-
proximations. Salaün et al. [SGH∗22] performed least-squares re-
gression on samples in the primary sample space to fit a polyno-
mial function (or other basis functions) approximating the contri-
bution of each sample to pixel radiance values. We observed that
their method struggles with integrals featuring many discontinu-
ities, as polynomial basis (as well as other basis functions) are
not well suited to approximate such functions. In contrast, our ap-
proach, which employs multiple control variates, effectively ad-
dresses these limitations. More recently, we note that the Clustered
Control Variates proposed by Zhu et al. [ZHB∗24] for rendering
cloth appearance model shares similarity with our approach. They
used K-means to segment texture map into clusters with similar
visibility and then calculated the average visibility for each cluster
as a control variate. Additionally, their method used a fixed number
of control variates with preset weights, in contrast to our adaptive
strategy.

2.2. Direct illumination computation with many lights

Direct illumination computation with next event estimation is a fun-
damental component of modern path tracing renderers [CEK18].
However, directly sampling every light in a scene becomes compu-
tationally infeasible as the number of lights exceeds a few dozen.
To address this challenge, various strategies have been developed
to manage the complexity of lighting calculations efficiently.

Earlier works focused on reducing the number of visibility tests
[KJ94, War94]. Shirley et al. [SWZ96] introduced an octree-based
approach to classify lights as either important or unimportant based
on their expected contribution. Paquette et al. [PPD98] and Wal-
ter et al. [WFA∗05] proposed clustering lights into hierarchical
structures and using adaptive tree cuts to approximate direct illu-
mination. These methods improve scalability at the cost of some
bias. Many subsequent approaches [WABG06, WKB12] have re-
fined these ideas. Estevez and Kulla [CEK18] introduced improved
criteria for constructing light hierarchies and adaptive tree-splitting
strategy for traversal. Liu et al. [LXY19] further enhanced effi-
ciency by incorporating BRDF evaluation at shading points during
light tree traversal.

Other approaches focused on adaptively constructing probabil-
ity density functions (PDFs) for direct light sampling. Donikian et
al. [DWB∗06] introduced aggregate PDFs over fixed image blocks
for progressive rendering, incrementally updating them across mul-
tiple passes until convergence. Vévoda et al. [VKK18] incorpo-
rated visibility information into light sampling by clustering shad-
ing points and applying Bayesian online regression to estimate
the optimal light selection probabilities. Rath et al. [RGH∗20] ex-
tended this method by marginalizing the BSDF, improving perfor-
mance for scenes with glossy surfaces and small lights. Wang et
al. [WWLC21] proposed a progressive light sampling method that
adaptively adjust both light clustering and sampling distributions
based on collected samples during rendering. All these methods re-
quire a prebuilt hierarchical light clustering structure that leverages
spatial coherence by grouping nearby lights with similar visibil-
ity, direction, and distance from the shading points. Similarly, in
scenes with a large number of lights, we construct such a hierarchi-
cal structure to efficiently organize them

Additionally, the problem of rendering with many lights has
been explored in the context of virtual point light (VPL) render-
ing [DKH∗14], as well as in various real-time [BWP∗20] and in-
teractive [OA11, TH16] direct illumination algorithms. However,
our work focuses specifically on direct illumination in offline ren-
dering.

3. Theoretical Background

Direct illumination estimation with many lights involves evaluating
integrals (as will be detailed in Section 5.1). In this section, we
begin by introducing the general integration problems.

3.1. Monte Carlo integration

Many problems in light transport simulation reduce to computing
integrals of the form

F =
∫

Ω

f (x)dx. (1)

where f (x) is the measurement contribution function of a light
transport path x [Vea97], and Ω is the path space. Since this integral
cannot be solved analytically, MC integration estimates it by

F ≈ ⟨F⟩n =
1
n

n

∑
i=1

f (xi)

p(xi)
, (2)

where samples xi are drawn from a probability density function
(PDF) p(x) and n is the number of samples.

Primary sample space. Following [CJMn21, SGH∗22], we map
the path space Ω to the unit hypercube U via the transformation x =
Φ(u). This primary sample space formulation is used throughout
the paper.

3.2. Control variates

The control variates (CVs) method reduces variance by introducing
a correlated function ĥ(u) with a known integral H =

∫
U ĥ(u)du.

The original integral can be rewritten as

F =
∫

U
f̂ (u) du =

∫
U

f̂ (u)−αĥ(u) du+αH, (3)
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where α controls the contribution of the control variate. The MC
estimator using control variates for n samples becomes

⟨F⟩n
∗ =

1
n

n

∑
i=1

f̂ (ui)−αĥ(ui)+αH. (4)

The optimal α= ρ[ f̂ (u), ĥ(u)]/Var[ĥ(u)], where ρ[ f̂ (u), ĥ(u)] is the
correlation coefficient between f̂ (u) and ĥ(u). With this choice, the
variance of the CVs estimator becomes

Var [⟨F⟩∗] = Var[⟨F⟩]
(

1−ρ2[ f̂ (u), ĥ(u)]
)
. (5)

3.3. Regression-based Monte Carlo integration

Salaün et al. [SGH∗22] proposed regression-based MC integration,
which employs least-squares regression to obtain ĥ(u). The upper
part of Figure 3 shows their method applied to a one-dimensional
function. In the following, we summarize their technique.

3.3.1. Least-squares regression of ĥ(u)

Salaün et al. [SGH∗22] modeled ĥ(u,θ) as a parametric function
with parameters θ = (c0,c1 · · · ,cM), and defined the residual for a
given θ as

R(θ) =
∫

U

(
f̂ (u)− ĥ(u,θ)

)2
du. (6)

The goal is to find the optimal parameters that minimize R(θ). To
solve this integral, they used n random samples ui to estimate it.

R(θ)≈ 1
n

n

∑
i=1

(
f̂ (ui)− ĥ(ui,θ)

)2
= ⟨R⟩(θ). (7)

Thus, the solution can be obtained by applying least-squares re-
gression of ĥ(u,θ) to n pairs of (ui, f̂ (ui)).

3.3.2. Polynomial-based estimators

Among several basis function choices, Salaün et al. [SGH∗22]
found polynomial basis functions to be effective in many cases.
A polynomial function ĥ(u) can be written as

ĥ(u) =
M

∑
j=0

c jφ j(u), (8)

where {φ j(u) are monomials and M is the polynomial order. The
integral H can be computed analytically once the coefficients c j
are determined. Salaün et al. [SGH∗22] proposed two regression
methods, a direct matrix method that solves a linear system, and
a stochastic gradient descent method that iteratively updates the
parameter.

Discussion. Regression-based MC integration [SGH∗22] pro-
vides a general framework for constructing control variates, with
theoretical guarantees that the resulting estimators achieve variance
equal to or lower than standard MC integration. However, since
the regression is only approximate for finite sample sizes, the the-
oretical variance reduction is not always achieved in practice. As
demonstrated in our experiments (Figure 6 and Figure 7), when the
scene contains many lights, the regression-based method may per-
form worse compared to standard MC integration.

4. Multiple Control Variates for Monte Carlo Integration

Building upon the regression-based MC integration framework
[SGH∗22], we propose a theoretical extension that introduces mul-
tiple control variates instead of relying on a single one. This ex-
tension forms the foundation of our approach and aims to further
reduce variance while improving robustness. In this section, we ex-
plain how multiple control variates can be constructed and discuss
the theoretical advantages of using them. The second row of Figure
3 illustrates our method applied to a one-dimensional function. We
begin by describing how to obtain the multiple control variates.

4.1. Stratification

Stratification divides the integration domain Ω into k disjoint sub-
domains Ω1, . . . ,Ωk such that

⋃k
i=1 Ωi = Ω. Each subdomain Ωi

which called a stratum, corresponds to a specific discrete selection,
such as selecting a particular light in a scene with many lights.

For each stratum Ωi, we define a transformed integrand f̂i via a
mapping to the unit hypercube U , and draw ni samples to compute
the local estimate as

⟨Fi⟩ni =
1
ni

ni

∑
j=1

f̂i(u j). (9)

Then the overall stratified estimator is ⟨F ′⟩ = ∑
k
i=1 vi⟨Fi⟩ni ,

where vi denotes the fractional volume of Ωi (i.e., vi ∈ (0,1]). The
variance of this estimator is

Var[⟨F ′⟩] = Var

[
k

∑
i=1

vi⟨Fi⟩ni

]
=

k

∑
i=1

v2
i σ

2
i

ni
. (10)

where σ
2
i denotes the variance of f̂i within Ωi. Assuming the num-

ber of samples in each stratum is proportional to its volume, i.e.,
ni = vin with n is the total number of samples, the variance simpli-
fies to

Var[⟨F ′⟩] = 1
n

k

∑
i=1

viσ
2
i . (11)

For comparison, the variance of the unstratified estimator is

Var[⟨F⟩] = 1
n

[
k

∑
i=1

viσ
2
i +

k

∑
i=1

vi (µi − I)2

]
, (12)

where µi is the mean value of f̂i in Ωi, and I is the global mean
of f̂ over Ω. This decomposition shows that stratification never in-
creases variance, i.e., Var[⟨F ′⟩] ≤ Var[⟨F⟩]. While stratification is
a well-established variance reduction technique in MC integration
(see, e.g., Veach’s thesis [Vea97]), our main contribution lies in how
we incorporate multiple control variates within these stratums.

4.2. Multiple control variates

Next, we determine a control variate ĥi(u) for each stratum and
compute its analytic integral Hi =

∫
U ĥi(u) du. For each stratum,

we decompose the original integral as

Fi =
∫

U
f̂i(u)−αiĥi(u) du+αiHi. (13)
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Figure 3: The figure compares our method with that of Salaün et al. [SGH∗22] for a one-dimensional integral. Given an integrand f (x)
(a), Salaün et al.’s method first (b) samples f (x) and then (c) fits a polynomial function to these samples. Their estimator subsequently (d)
leverages control variates by adding the analytical integral of the model function to the MC estimate of the residual. In contrast, our method
first (e) partitions f (x) into multiple sub-integrands f1(x), f2(x), f3(x) via stratification (Section 4.1) and samples each separately with
varying sample counts. We then (f) fit a polynomial to each set of samples and (g) combine their analytical integrals with MC estimates of
their respective residuals. Since each sub-function is simpler and modeled with fewer samples, our method achieves greater modeling power
without incurring additional regression overhead.

The corresponding CVs estimate is then given by

⟨Fi⟩ni
∗ =

1
ni

ni

∑
i=1

f̂i (ui)−αiĥi (ui)+αiHi, (14)

with αi = ρ[ f̂i(u), ĥi(u)]/Var[ĥi(u)], where ρ[ f̂i(u), ĥi(u)] is the
correlation coefficient between f̂i(u) and ĥi(u). Consequently, the
variance after applying control variates in Ωi is

Var
[
⟨Fi⟩ni

∗
]
= Var

[
⟨Fi⟩ni

](
1−ρ2 [ f̂i(u), ĥi(u)

])
. (15)

Thus, in each stratum, the use of control variate reduces the vari-
ance by a factor of (1−ρ2[ f̂i(u), ĥi(u)]). Similarly, the overall es-
timator across the entire domain Ω is expressed as

⟨F ′⟩∗ =
k

∑
i=1

vi⟨Fi⟩ni
∗ . (16)

4.3. Variance reduction with multiple control variates

We now compare the variance of the overall estimate using multiple
control variates with that of the standard MC estimator. According
to Equation 16, the overall variance is given by

Var
[〈

F ′〉
∗
]
=

k

∑
i=1

v2
i Var

[
⟨Fi⟩ni

∗
]

=
k

∑
i=1

v2
i Var

[
⟨Fi⟩ni

](
1−ρ2 [ f̂i(u), ĥi(u)

])
.

(17)

Since ρ2 [ f̂i(u), ĥi(u)
]

is non-negative and less than or equal to 1, it
follows that

Var
[〈

F ′〉
∗
]
≤ Var[⟨F ′⟩] (18)

This expression demonstrates that employing multiple control vari-
ates reduces variance compared to not using control variates. Com-

bined with the stratification result from Section 4.1, we obtain

Var
[〈

F ′〉
∗
]
≤ Var[⟨F⟩]. (19)

This confirms that using multiple control variates will reduce the
overall variance of the MC estimator, yielding a more accurate es-
timate of the target function f̂ (u). Intuitively, using several con-
trol variates—each designed to capture distinct features of the inte-
grand—provides greater representational capacity than relying on
a single control variate. Consequently, this approach has the poten-
tial to achieve superior variance reduction compared to the single
control variate method. To facilitate our discussion, we define a
combined control variate ĝ(u) as the weighted sum of individual
control variates ĥi(u),

ĝ(u) =
k

∑
i=1

viĥi(u), (20)

where vi ≥ 0 and ∑
k
i=1 vi = 1 are the weights associated with each

stratum. In practice, the effectiveness of this combined control vari-
ate hinges on two critical factors, the correlation between each con-
trol variate ĥi(u) and its corresponding target function f̂i(u) within
each stratum and the choice of weights vi used in constructing ĝ(u).
When the individual control variates ĥi(u) exhibit strong correla-
tion with their respective integrands, and the weights vi are care-
fully optimized to reflect the relative importance of each stratum,
the multiple control variates method can substantially outperform
the single control variate approach. In such cases, the combined
surrogate function ĝ(u) yields a closer approximation to the tar-
get function and achieves more effective variance reduction. As il-
lustrated in Figure 3, the integration of effective stratification and
adaptive construction of control variates enables the multiple con-
trol variates method to deliver significantly higher estimation accu-
racy than its single-control counterpart.
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5. Direct Illumination with Many Lights based on Multiple
Control Variates

In this section, we present our method for estimating direct illu-
mination with many lights using multiple control variates. By de-
composing the three-dimensional integration problem into discrete
light selection and two-dimensional sampling over the light sur-
face, we construct separate control variates for the light selection
dimension. We first formulate the problem, then outline the overall
solution, and finally provide implementation details.

5.1. Direct illumination estimation with many lights

Given a shading point x with viewing direction ωo and a set of
lights L, the outgoing radiance Lo(x,ωo) is computed by summing
the contributions F from all lights:

Lo (x,ωo) = ∑
l∈L

F (x,ωo, l) . (21)

If l is a point light, then F is the product of light intensity, ma-
terial (i.e., the Bidirectional Scattering Distribution Function), vis-
ibility, and a geometry term. In contrast, for an area light, F is ob-
tained via integration over the light’s surface. When the light set
L is large, evaluating the complete discrete sum for every shad-
ing point become impractical. Therefore, MC integration is used to
estimate the contributions of all lights.

To improve the efficiency of importance sampling for this dis-
crete sums, previous studies often cluster lights into more manage-
able, non-overlapping subsets C(x):

L(x) = ∑
c∈C(x)

∑
l∈c

F(x, l) = ∑
c∈C(x)

Fc(x), (22)

where Fc(x) = ∑l∈c F(x, l) (omitting ωo for brevity). This double
sum is then estimated via MC sampling as

L(x)≈ ⟨L(x)⟩= 1
n

n

∑
i=1

F(x, li)
p(li|x,ci)p(ci|x)

, (23)

where p(ci|x) is the probability of selecting cluster ci for the shad-
ing point x, and p(li|x,ci) is the probability of selecting light li ∈ ci
given the shading point and cluster (or probability density if li is an
area light). This formulation corresponds to the stratification step
in our multiple control variates framework (Section 4.1), where the
light cluster ci is first sampled.

5.2. Solution overview

Our goal is to reduce variance in the many-light direct illumination
problem by leveraging multiple control variates. To this end, we
construct a polynomial control variate for each light or light cluster
to mitigate the discontinuities in the integrand caused by numerous
lights. Our method processes each pixel independently and consists
of the following steps:

• Stratification & Sampling (Fig.3.e):

1) For scenes with a small number of lights, we construct one
control variate per light and use uniform light sampling to
generate samples. Each control variate ĥi(x) gathers samples

from its corresponding light, and the number of control vari-
ates equals the number of lights, with each control variate
weighted by the reciprocal of the total number of lights.

2) For scenes with many lights, we first cluster the lights into
a BVH tree (detailed in Section 5.3.1) and then select repre-
sentative points (detailed in Section 5.3.2) for each pixel to
generate light cuts (a set of light clusters). This identifies the
light clusters (or individual lights) contributing to that pixel.
For each light cluster (or light), we construct a control variate
and generate samples using a Lightcuts-based light sampling
method [CEK18] (detailed in Section 5.3.1). In this case, the
number of control variates per pixel varies with the number of
light clusters, and weights are computed based on the normal-
ized importance of each cluster at the representative points.

• Solving (Fig.3.f): We employ the gradient descent method (Sec-
tion 3.3.2) to solve for the coefficients of a polynomial func-
tion for each control variate, subsequently calculating the corre-
sponding αi and the analytic integral Hi.

• Estimating (Fig.3.g): We combine the analytical integrals of the
polynomial control variates with the MC estimates of the dif-
ferences using Equation 16, ensuring that each control variate is
assigned the correct weight vi. At this stage, the weight values
for the light cluster case have not yet been determined (and will
be derived in Section 5.3.2).

5.3. Implementation

For scenes with many lights, generating a separate control vari-
ate for each individual light is impractical. Therefore, we adopt
a Lightcuts-based approach to adaptively determine the appropri-
ate number of control variates. Our implementation consists of two
key components: Lightcuts-based light sampling and adaptive con-
struction of multiple control variates.

5.3.1. The Lightcuts-based light sampling

To determine the number and weights of the control variates, as
well as to generate the corresponding samples for each control
variate, we adopt a Lightcuts-based light sampling method. This
method involves the following steps:

Light hierarchy construction. We build a hierarchical light tree
by recursively splitting the set of all lights, starting from a root
node, to form a structure similar to a Bounding Volume Hierarchy
(BVH). We use the Surface Area Orientation Heuristic (SAOH)
metric [CEK18] for node splitting. This metric extends the tradi-
tional Surface Area Heuristic (SAH) by incorporating bounding
cone orientation and emitted energy, thereby grouping lights ef-
fectively based on spatial proximity, directionality, and intensity.
Each node in the hierarchy stores a spatial bounding box centered
at Cc, an orientation cone that encapsulates the surface normals of
the contained lights, and the total energy E of these lights (Figure
4 (b)).

Light cut construction. After constructing the light tree, we tra-
verse it from top to bottom to generate a light cut for each shading
point during path tracing. As illustrated in Figure 4(a), the number
of nodes in the light cut determines the number of control variates

© 2025 The Author(s).
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Figure 4: (a) A light tree and an example light cut. (b) Calculating
the cluster importance from a shading point x using the cluster
bounds.

to be used. This process is analogous to the cut selection phase of
the Lightcuts algorithm [WFA∗05].

Light cluster sampling. Once a light cut is determined, we sam-
ple a light cluster based on its computed importance, which also in-
forms the weighting of the corresponding control variates. This im-
portance is derived from the cluster’s spatial and orientation bounds
relative to the shading point, factoring in geometric decay from
inverse square distance and the cosine effect from the orientation
bounds [CEK18]. As illustrated in Figure 4 (b), θu is the cone an-
gle encompassing the bounding box from the shading point x, θi is
the incident angle from x to the cluster center, and d is the distance
of this segment. The importance of a light cluster is defined as

IC(x) =
fx
∣∣cosθ

′
i
∣∣ E cos

(
θ
′)

d2 , (24)

where fx is an arbitrary approximation of the BSDF at x,
θ
′
i = max{θi −θu,0} is the minimum incidence angle and θ

′ =
max{θ−θo −θu,0} is the minimum angle between the emitter’s
normal and the direction toward x. We recursively sample light
clusters with probabilities proportional to their importance until a
leaf node containing a single light is reached.

Light sampling. After a specific light is selected, we sample its
surface uniformly following standard techniques [PJH16, SWZ96]
to obtain a light sample.
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Figure 5: Visualization of the number of control variates for each
pixel on four scenes: (a) Bathroom, (b) Staircase2, (c) Classroom
and (d) Cornell-box. In other scenes, the number of control variates
equals the number of lights.

5.3.2. Adaptive construction of multiple control variates

This subsection details the adaptive construction of control vari-
ates for each pixel, including how we determine their number and
weights vi. This process corresponds to the stratification step in
Section 4.1. As illustrated in Figure 5, the number of control vari-
ates varies adaptively across different scenes. We begin by selecting
representative points within each pixel to guide the construction.

Selection of representative points. A straightforward strategy is
to use the pixel center as the representative point. From this point,
we emit a camera ray, compute the corresponding shading point,
and traverse the light tree to obtain a light cut. In this setting, the
number of control variates equals the number of nodes in the light
cut, with weights vi computed from the normalized importance of
the corresponding light clusters. As shown in Figure 9, using only
the pixel center as the representative point suffices for most regions
but causes aliasing near geometric edges.

To mitigate aliasing, we employ supersampling by subdividing
each pixel into sub-pixels and selecting the center of each as a
representative point. For each sub-pixel, we repeat the process of
emitting camera rays, determining shading points, and traversing
the light tree to generate its own light cut. In our implementation,
we use 16 representative points per pixel. And this setup offers a
good balance between improved image quality and computational
cost

Merging light clusters and computing weights. Each repre-
sentative point yields a distinct set of light clusters from its corre-
sponding light cut. Assume that there are M representative points,
to construct the control variates for a pixel, we traverse all clusters
using an unordered_map keyed by cluster ID to de-duplicate them
into N clusters. The final control variate weight for the i-th cluster
is computed as follows:

• Normalization: For each representative point m, the normalized
weight for the i-th cluster is computed by

vi, m =
wi, m

∑
Nm
j=1 w j, m

, (25)

where wi, m is the importance (Equation 24) of the i-th light clus-
ter at point m, and Nm is the total number of light clusters asso-
ciated with that point.

• Aggregation: The final control variate weight Vi is obtained by
averaging the normalized weights over all representative points:

Vi =
1
M

M

∑
m=1

vi,m (26)

Solving multiple control variates. For each light cluster, we
construct a first-order polynomial control variate and generate sam-
ples using the Lightcuts-based light sampling method (Section
5.3.1). Each control variate ĥi(x) collects samples from its corre-
sponding light cluster. Since the integrand for each light cluster is
relatively simple and the sample size is small, we use the stochastic
gradient descent method (set the learning rate to 0.01) with a single
iteration to solve for the polynomial coefficients, thereby obtaining
the corresponding αi and the analytical integral Hi. The resulting
coefficients are stored in a single-column matrix, while the multi-
ple polynomials for each pixel are organized into a vector.

© 2025 The Author(s).
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Table 1: We present the number of area lights, average cut size and
the number of our multiple control variates for each scene.

Scene # lights avg. cut size # control variates
Staircase1 2 / 2
Veach-mis 5 / 5
Staircase2 21 7.9 0 - 12
Bathroom 32 5.1 0 - 10
Classroom 162 7.6 0 - 31

Cornell-box 1494 10.28 4 - 33

6. Results

We implemented our method in the PBRT renderer [PJH16], build-
ing on the regression-based MC integration approach proposed by
Salaün et al. [SGH∗22]. All results were generated on a 3.20 GHz
Intel i9 CPU (24 cores) with 64GB of RAM. To assess perfor-
mance, we compared our method with conventional MC integra-
tion (uniform light sampling), regression-based MC integration (us-
ing a single control variate) by Salaün et al. [SGH∗22], optimal
multiple importance sampling by Kondapaneni et al. [KVG∗19]
and adaptive tree splitting for many-light sampling by Estevez et
al. [CEK18], using relative mean squared error (relMSE) as the
evaluation metric. The reference image for each scene was com-
puted with 65,536 samples per pixel. We evaluated our method for
direct illumination in different scenes, and Table 1 presents the rel-
evant statistics for these scenes.

To handle multiple color channels, we first estimate the RGB
value Frgb by averaging RGB samples as Frgb ≈

〈
Frgb

〉
=

1/n∑
n
i=1 f̂rgb (ui), where f̂rgb represents the integrand that returns

an RGB sample. Next, we perform regression on the luminance
value of the samples to obtain the luminance value H as the ana-
lytical integral. The final RGB reconstruction based on our estima-
tor is given by ⟨F ′

rgb⟩∗ =
(
⟨Frgb⟩/y

(〈
Frgb

〉))
⟨F ′⟩∗, where y is the

luminance function and ⟨F ′⟩∗ is the luminance estimate obtained
using our method .

6.1. Comparison to Salaün et al. [SGH∗22]

Figure 1, Figure 6 and Figure 7 compare our method using first-
order polynomial with conventional MC integration and regression-
based MC integration by Salaün et al. [SGH∗22] using first-order
(O1) and third-order (O3) polynomials across five different scenes,
all rendered with equal time budgets. These scenes contain both
diffuse and glossy materials.

For scenes with a small number of lights, e.g., VEACH-MIS (top
row, Figure 6), our method constructs one control variate for each
light, while Salaün et al.’s method employs only a single control
variate. In this case, our approach provides a significant quality im-
provement without additional time overhead.

For scenes with many lights, BATHROOM (Figure 1), STAIR-
CASE2 (bottom row, Figure 6), CLASSROOM and CORNELL-BOX

(Figure 7), our method adaptively determines the number of con-
trol variates based on light cuts and employs the Lightcuts-based
light sampling technique. To ensure an equal time comparison
with [SGH∗22], we use a fewer SPP due to the extra computa-
tional cost of light cuts construction. Despite this, our method still

shows a noticeable reduction in noise compared to Salaün et al.’s
approach for both O1 and O3. Moreover, Salaün et al.’s method
becomes less efficient than conventional MC integration in scenes
with many lights (e.g., CLASSROOM and CORNELL-BOX) because
the increasing discontinuities in the integrand hinder effective re-
gression on a finite number of samples. In contrast, our multiple
control variates approach remains robust under such conditions, as
shown in Figure 2, delivering significant quality gains as light count
and complexity grow.

Figure 8 illustrates error convergence plots for the scenes de-
scribed above. In scenes with fewer than 100 lights (e.g., BATH-
ROOM and STAIRCASE2), the method of Salaün et al. outperforms
MC estimation. However, as the number of lights increases sub-
stantially (e.g., CLASSROOM and CORNELL-BOX), their approach
fails to surpass MC estimation. In contrast, our method consis-
tently achieves faster convergence than both MC and Salaün et al.’s
method.

6.2. Comparison to Kondapaneni et al. [KVG∗19]

Kondapaneni et al. [KVG∗19] derived an estimator in the form of
control variates by optimizing the multiple importance sampling
(MIS) weighting function and applied it to direct illumination. In
Figure 10, the light and BSDF sampling samples are first combined
using balance heuristics weights to estimate the illumination from
individual light (a), then combined using Kondapaneni et al.’s opti-
mal weights (b), and finally our method constructs one control vari-
ate for each light (c). In this setting, our method achieves a slight
improvement over Kondapaneni et al.’s approach.

Figure 11 illustrates the STAIRCASE1 scene, which contains two
lights. This example clearly demonstrates how both our method and
Kondapaneni et al.’s method improve estimation quality. Uniform
light sampling in MC estimation introduces noise due to the ran-
dom selection of lights. The Trained technique in PBRT [PJH16]
partitions the scene into a regular grid, estimates the unoccluded
contributions of all lights in each cell, and utilizes these estimates
as light selection probabilities. While this approach performs nearly
optimally on unoccluded surfaces, it introduces significant noise in
shadowed areas. Kondapaneni et al. addressed this issue by opti-
mally combining the Trained and Uniform techniques, resulting in
improved estimation quality. In contrast, our method employs mul-
tiple control variates in MC integration, constructing one control
variate for each light in the scene, thereby improving the quality of
MC estimation. Our approach is complementary to that of Konda-
paneni et al., as we focus on improving the MC estimation process
through control variates, whereas they concentrate on optimizing
light sampling.

6.3. Comparison to Estevez et al. [CEK18]

In scenes with many lights, we incorporate a Lightcuts-based light
sampling technique into our adaptive control variate framework.
While Estevez et al. [CEK18] proposed an adaptive tree splitting
method for importance sampling of many lights, our method builds
on this by combining it with adaptive construction of multiple con-
trol variates. As shown in Figure 12, when comparing our method
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Veach-mis 1152 × 864 pixels  

relMSE (×10-3)
65536 spp 128 spp 120 spp 120 spp 108 spp

14.2 (1.00×) 4.2 (3.38×) 11.8 (1.20×) 9.2 (1.54×)
Staircase2 1024 × 1024 pixels  

relMSE (×10-3)
65536 spp 256 spp 112 spp 224 spp 206 spp

30.6 (1.00×) 4.2 (7.28×) 32.8 (0.93×) 27.4 (1.11×)

Salaün et al. (O3)MC Ours Salaün et al. (O3)MC Ours

Salaün et al. (O3)MC Ours Salaün et al. (O3)MC Ours

Reference MC Salaün et al. (O1) Salaün et al. (O3)Ours 

Reference MC Salaün et al. (O1) Salaün et al. (O3)Ours 

Figure 6: Equal-time comparison among our method with polynomials of order 1, conventional MC, and regression-based MC integration of
Salaün et al. [SGH∗22] with polynomials of order 1 (O1) and 3 (O3) on the Veach-mis and Staircase2 scene. For a more detailed comparison,
please refer to the HTML viewer provided in the supplemental.

with that of Estevez et al. under equal SPP, our approach yields a
modest improvement in image quality.

7. Discussion and Future Work

In this section, we discuss the limitations of our current approach
and outline promising directions for future research.

Comparison with other many-light sampling methods. Exist-
ing methods [VKK18, LXY19, RGH∗20, WWLC21] improve light
clustering and sampling by leveraging information collected during
rendering. In contrast, our approach focuses on enhancing the final
MC estimation through multiple control variates. We believe that
integrating our approach with these techniques could yield further
improvements.

Visibility. Our current implementation does not account for visi-
bility when computing light cluster selection probabilities, which
limits its ability to handle occlusion-related discontinuities. In-
tegrating visibility-aware strategies, such as those proposed by
[VKK18] and [WWLC21], represents a promising direction to
overcome this limitation.

Incremental estimators. In our implementation, we construct the
sample estimator ⟨Fi⟩ni∗ for each control variate ĥi by performing
regression using all ni samples, and then evaluating the estimator
with the same samples. It can be extended to progressive rendering
where samples are added incrementally, for instance, the incremen-
tal estimate ⟨Fi⟩ni+1

∗ can be defined as

⟨Fi⟩ni+1
∗ =

1
ni +1

(
ni⟨Fi⟩ni

∗ +
(
Hni

i + f̂i (uni+1)− ĥni
i (uni+1)

))
,

(27)
where ⟨Fi⟩ni∗ is the current estimate, ĥni

i is the regression solution

based on ni samples, and Hni
i is the corresponding analytic inte-

gral. With each new sample, the control variate is recomputed for
the appropriate light cluster, and the corresponding estimator is up-
dated accordingly.

Bias. Our current implementation uses the same sample set for
both solving the regression model of the control variate and esti-
mating the residual, which introduces bias into the estimator. This
bias stems solely from the shared sample set and does not impact
the validity of our theoretical analysis. Nonetheless, future work
could explore decoupling the regression and estimation stages to
mitigate this bias.

Environment light. Our method does not yet handle high-
frequency environment lighting effectively. In particular, using a
single control variate is insufficient to manage the discontinuities
in the integrand produced by complex environment maps. We plan
to extend our approach by combining multiple control variates with
structured importance sampling of the environment map [ARBJ03],
which may improve performance in these scenes.

Generalizability. Our work demonstrates that multiple control
variates can effectively accelerate MC integration convergence for
low-dimensional direct illumination problems. However, by storing
statistics solely in image space, our method faces limitations in gen-
eralizing to high-dimensional integrals prevalent in many rendering
tasks. Exploring scene-space control variates, as investigated in re-
cent works [Pan20, HGS23], offers a promising avenue for future
improvements.

8. Conclusion

In this work, we introduce an adaptive multiple control variates
framework to improve the Monte Carlo integration for many-light
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MC Ours Salaün et al. (O3)

Classroom 1280 × 720 pixels  Reference MC Salaün et al. (O1) Salaün et al. (O3)Ours 

relMSE (×10-3)
65536 spp 512 spp 216 spp 480 spp 444 spp

20.1 (1.00×) 2.7 (7.44×) 28.6 (0.70×) 22.6 (0.89×)

Cornell-box 1024 × 1024 pixels  Reference MC Salaün et al. (O1) Salaün et al. (O3)Ours 

relMSE (×10-3)
65536 spp 512 spp 316 spp 475 spp 455 spp

26.5 (1.00×) 2.7 (9.81×) 28.8 (0.92×) 28.7 (0.92×)MC Ours Salaün et al. (O3)

Figure 7: Equal-time comparison among our method with polynomials of order 1, conventional MC, and regression-based MC integration
of Salaün et al. [SGH∗22] with polynomials of order 1 (O1) and 3 (O3) on the Classroom and Cornell-box scene.

rendering. By leveraging hierarchical light clustering inspired by
the Lightcuts approach, our method dynamically adjusts the num-
ber of control variates according to the spatial distribution and in-
herent discontinuities of lights within the scene. We provided a rig-
orous mathematical foundation to demonstrate that our approach
reduces variance, leading to marked improvements in rendering
quality for the direct illumination problem. Although our experi-
ments focused on low-dimensional integration scenarios, the en-
couraging results pave the way for future research aimed at extend-
ing this adaptive strategy to high-dimensional integration and more
complex rendering challenges.

Acknowledgements

We thank the reviewers for the valuable comments. We thank
the following for scenes used in our experiments: nacimus
(Bathroom), Veach (Veach-mis), NewSee2l035 (Staircase2), Jay-
Artist (Living-room2), NovaZeeke (Classroom), Wig42 (Stair-
case1). This work has been partially supported by the Na-
tional Natural Science Foundation of China (No. 62272275),

the Taishan Scholars Program (No. tsqn202312231), Qilu Uni-
versity of Technology (Shandong Academy of Sciences) Fac-
ulty of Computer Science and Technology Pairing Program (No.
2024JDJH13).

References

[ARBJ03] AGARWAL S., RAMAMOORTHI R., BELONGIE S., JENSEN
H. W.: Structured importance sampling of environment maps. In ACM
SIGGRAPH 2003 Papers. 2003, pp. 605–612. 9

[BWP∗20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P.,
LEFOHN A., JAROSZ W.: Spatiotemporal reservoir resampling for real-
time ray tracing with dynamic direct lighting. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 148–1. 3

[CAM08] CLARBERG P., AKENINE-MÖLLER T.: Exploiting visibility
correlation in direct illumination. In Computer Graphics Forum (2008),
vol. 27, Wiley Online Library, pp. 1125–1136. 2

[CEK18] CONTY ESTEVEZ A., KULLA C.: Importance sampling of
many lights with adaptive tree splitting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1, 2 (2018), 1–17. 3, 6,
7, 8, 12

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



X. Xu & L. Wang / Adaptive Multiple Control Variates for Many-Light Rendering 11 of 12

(a) Bathroom (b) Staircase2

(c) Classroom (d) Cornell-box

Figure 8: Convergence plot for equal-time comparisons across
four scenes: (a) Bathroom, (b) Staircase2, (c) Classroom and (d)
Cornell-box. The metric is relMSE and horizontal axis is time (s).
In all scenes, our method shows faster convergence compared to
both MC estimation and the method proposed by Salaün et al.
[SGH∗22].

Reference  1 point 4 points 16 points

relMSE 0.0038
Time

0.0037 0.0035
37.5s 38.5s 39.5s

Figure 9: Experimental results for increasing the number of repre-
sentative points per pixel in the Bathroom scene. As the number of
represented points increases, the degree of aliasing decreases and
the time cost increases.

[CJMn21] CRESPO M., JARABO A., MUÑOZ A.: Primary-space adap-
tive control variates using piecewise-polynomial approximations. ACM
Transactions on Graphics 40, 3 (July 2021). URL: https://doi.
org/10.1145/3450627, doi:10.1145/3450627. 2, 3
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Figure 12: Equal-sample comparison of Estevez et al. [CEK18]
and our method. We report the time and the relMSE value compared
to the reference image for the whole image.
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