

Adaptive Multiple Control Variates for Many-Light Rendering

Xiaofeng Xu, Lu Wang Shandong University, China

Calculus-oriented interpretation

Limitations of Monte Carlo Integration

EGSR 2025 DENMARK

256 samples per pixel

Regression-based Monte Carlo Integration

Salaün, C., Gruson, A., Hua, B. S., Hachisuka, T., & Singh, G. (2022). Regression-based Monte Carlo integration. ACM Transactions on Graphics (TOG), 41(4), 1-14.

[Salaün et al. 2022] proposed using a more complex function instead of a constant function.

Reproduced from Salaün et al. (2022) – SIGGRAPH Presentation Slides

Reproduced from Salaün et al. (2022) – SIGGRAPH Presentation Slides

10

Reproduced from Salaün et al. (2022) – SIGGRAPH Presentation Slides

11

Regression Leads to Biased Result

Reproduced from Salaün et al. (2022) – SIGGRAPH Presentation Slides

Regression Leads to Biased Result

F = G + (F - G)

Reproduced from Salaün et al. (2022) – SIGGRAPH Presentation Slides

Regression-based Monte Carlo Integration

EGSR 2025

- The least-squares regression solution is not exact for any finite number of samples.
- The integrand can be highly discontinuous due to complex scene configurations (especially in scenes with many lights or complex visibility).

An Example Scene

Many-light Discontinuity

Number of Lights

(2) (1) Adaptive Multiple Control Variates

Multiple Control Variates vs. Single Control Variate

Multiple Control Variates vs. Single Control Variate

Multiple Control Variates

Results of Multiple Control Variates

• For all lights, we first construct a light BVH tree.

- For all lights, we first construct a light BVH tree.
- For each pixel, we select a representative point and shoot a camera ray to obtain the corresponding shading point **x**.

- For all lights, we first construct a light BVH tree.
- For each pixel, we select a representative point and shoot a camera ray to obtain the corresponding shading point **x**.
- For a shading point, we construct a light cut and compute the corresponding weight.

Conty Estevez, A., & Kulla, C. (2018). Importance sampling of many lights with adaptive tree splitting. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 1(2), 1-17.

- For all lights, we first construct a light BVH tree.
- For each pixel, we select a representative point and shoot a camera ray to obtain the corresponding shading point **x**.
- For a shading point, we construct a light cut and compute the corresponding weight.
- For each node in the cut, we create a low-order polynomial as a control variate.

Visualization of the Number of Control Variates

EGSR 2025

Results (Equal Time Comparison)

ReferenceMCOursSalaün et al. (O1)Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image: Salaün et al. (O3)Image: Salaün et al. (O1)Image: Salaün et al. (O1)Image

Bathroom scene has 32 mesh lights.

Ours

0-10 (avg. 5.1) control variates (polynomial with order 1)

vs. [SGH*22]

Single control variate (polynomials with order 1 & 3)

Staircase2 1024 × 1024 pixels

Staircase2 scene has 21 mesh lights.

Ours 0-12 (avg. 7.9) control variates (polynomial with order 1) vs. [SGH*22] Single control variate (polynomials with order 1 & 3)

Classroom scene has 162 mesh lights.

Ours

0-31 (avg. 7.6) control variates (polynomial with order 1)

vs. [SGH*22]

Single control variate (polynomials with order 1 & 3)

Cornell-box scene has 1494 lights.

Ours 4-33 (avg. 10.28) control variates (polynomial with order 1)

vs. [SGH*22]

Single control variate (polynomials with order 1 & 3)

• We introduce an adaptive multiple control variates framework to improve the

Monte Carlo integration for many-light rendering.

Limitations and Future Work

Limitations

- Limited to specific many-light rendering.
- Visibility-related discontinuities are not yet handled.

Future work

- Extend to support other rendering applications.
- Incorporate visibility-aware strategies.

Acknowledgements

- We would like to thank the reviewers for the valuable comments.
- We would like to thank the following for scenes used in our experiments: nacimus (Bathroom), Veach (Veach-mis), NewSee2l035 (Staircase2), JayArtist (Living-room2), NovaZeeke (Classroom), Wig42 (Staircase1).
- We would like to thank Corentin Salaün for sharing the code and slides.

Thank you!

Adaptive Multiple Control Variates for Many-Light Rendering

Xiaofeng Xu, Lu Wang Shandong University, China

43